RAMAKRISHNA MISSION VIDYAMANDIRA

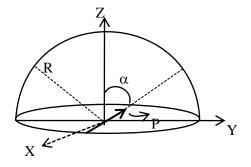
(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [2018-21] B.A./B.Sc. THIRD SEMESTER (July – December) 2019

Mid-Semester Examination, September 2019

Date : 16/09/2019 Time : 1 pm - 3 pm PHYSICS (Honours) Paper : III

Full Marks : 50


[5]

[1]

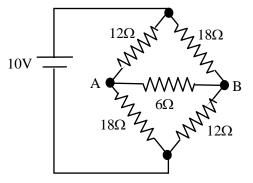
<u>Group – A</u> <u>Unit – I</u> (Answer any two questions)

[2×5]

- 1. Suppose there is a circular hole of radius *a* at the centre of an infinite plane having a uniform charge density σ . Find the potential at an axial distance *x* from the centre of the hole.
- 2. A dipole \vec{P} kept at the origin makes an angle α with the z-axis as shown in figure. Calculate the electric flux through the upper hemisphere of a spherical surface of radius R centred at the origin. [5]

- 3. A charge system consists of point charges +q, -q, +q, -q at points $(a\sqrt{2}, 0, 0), (0, a\sqrt{2}, 0), (-a\sqrt{2}, 0, 0)$ and $(0, -a\sqrt{2}, 0)$ respectively. Find out the quadrupole moment tensor for this system. Also find out the potential due to the quadrupole. [5]
- 4. a) Define electric dipole? Determine the electric potential and field at $P(r, \theta)$ due to electric dipole. [4]
 - b) Also find out the polar equation of the equipotential surface of the dipole.

<u>Unit – II</u> (Answer <u>any six</u> questions) [6×5]


5.	An infinitely large current sheet of thickness t lying in the xy plane with current density $J\hat{x}$.	
	Find the magnetic field \vec{B} (i) outside and (ii) inside of the sheet.	[5]
6.	Show that $(\vec{H}_1 - \vec{H}_2) \times \hat{n}_{12} = \vec{K}_c$ (symbols have their usual meaning). [4]	[5]
7.	Find and expression for magnetic field \vec{B} at a distance z along the axis of a circular coil carrying current I.	[5]
8. a)	What is Ampere's circuital law? Deduce Ampere's circuital law in differential form.	
b)	In free space the magnetic field $\vec{B} = xy\hat{z} + yz\hat{x} + zx\hat{y}$. Find current density J. [1+2+3]	2]
9. a)	Establish the relation between magnetization (M) and equivalent surface current density in Rowland ring of uniform magnetization.	
b)	An infinitely long circular cylinder carries a uniform magnetization $\vec{M} = M\hat{z}$. Find the magnetization current densities. [3+:	2]
10.	Find the magnetic vector potential \vec{A} due to a small filamentary circular current loop of radius <i>a</i> .	[5]

[5]

[2]

[5]

- 11. The magnetic scalar potential V_m due to uniform magnetic sphere satisfies the Laplace's equation, $\nabla^2 V_m = 0$. Find the magnetic scalar potential at a point $P(r, \theta, \phi)$ outside of the sphere.
- 12. a) Establish the continuity equation relating the charge density and current density at a point in a medium. [3]
 - b) A coaxial cable of length *l* consists of a solid cylindrical inner conductor of radius r_1 , the inner radius of the hollow outer conductor being r_2 . The space between the cylinder is filled with an imperfect dielectric of conductivity σ . Find the resistance offered by the dielectric.
- 13. State Theremin's theorem and use it to calculate the current through the 6Ω resistor in the following circuit.

14. a) What are phasors?

[1]

b) Discuss the energy conservation through pure inductive circuit, if an alternating power supply is given to it. [4]

<u>Group – B</u> (Answer <u>any two</u> questions) [2×5]

14.	a)	Describe how depletion region is formed at the junction of a PN diode.	[2]
	b)	Define Barrier Field with explanation and give a schematic showing variation of the same with the dimension of the diode.	[3]
15.	a)	Differentiate between various breakdown mechanisms with proper explanation.	[2]
	b)	State how a breakdown diode is used as a regulator.	[3]
16.	a)	Define DC load current, Ripple Factor and Rectification Efficiency.	[1.5]
	b)	Obtain above mentioned parameters for a full-wave rectifier with two diodes.	[3.5]
17.	a)	Show various current components of a PNP transistor with suitable explanation.	[3]
	b)	Draw the CE input and output characteristics and show different regions of operation of the transistor.	[2]

_____ × _____